Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 967
Filtrar
1.
Brain Res Bull ; 210: 110928, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493836

RESUMO

Epilepsy-associated cognitive disorder (ECD), a prevalent comorbidity in epilepsy patients, has so far uncharacterized etiological origins. Our prior work revealed that lysyl oxidase (Lox) acted as a novel contributor of ferroptosis, a recently discovered cell death mode in the regulation of brain function. However, the role of Lox-mediated ferroptosis in ECD remains unknown. ECD mouse model was established 2 months later following a single injection of kainic acid (KA) for. After chronic treatment with KA, mice were treated with different doses (30 mg/kg, 100 mg/kg and 300 mg/kg) of Lox inhibitor BAPN. Additionally, hippocampal-specific Lox knockout mice was also constructed and employed to validate the role of Lox in ECD. Cognitive functions were assessed using novel object recognition test (NOR) and Morris water maze test (MWM). Protein expression of phosphorylated cAMP-response element binding (CREB), a well-known molecular marker for evaluation of cognitive performance, was also detected by Western blot. The protein distribution of Lox was analyzed by immunofluorescence. In KA-induced ECD mouse model, ferroptosis process was activated according to upregulation of 4-HNE protein and a previously discovered ferroptosis in our group, namely, Lox was remarkably increased. Pharmacological inhibition of Lox by BAPN at the dose of 100 mg/kg significantly increased the discrimination index following NOR test and decreased escape latency as well as augmented passing times within 60 s following MWM test in ECD mouse model. Additionally, deficiency of Lox in hippocampus also led to pronounced improvement of deficits in ECD model. These findings indicate that the ferroptosis regulatory factor, Lox, is activated in ECD. Ablation of Lox by either pharmacological intervention or genetic manipulation ameliorates the impairment in ECD mouse model, which suggest that Lox serves as a promising therapeutic target for treating ECD in clinic.


Assuntos
Disfunção Cognitiva , Epilepsia , Humanos , Camundongos , Animais , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Aminopropionitrilo/farmacologia , Regulação da Expressão Gênica , Modelos Animais de Doenças , Disfunção Cognitiva/tratamento farmacológico
2.
Matrix Biol ; 128: 11-20, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382767

RESUMO

Tissue repair and fibrosis involve the dynamic remodeling of collagen, and accurate detection of these sites is of utmost importance. Here, we use a collagen peptide sensor (1) to visualize collagen formation and remodeling during wound healing in mice and humans. We show that the probe binds selectively to sites of collagen formation and remodeling at different stages of healing. Compared to conventional methods, the peptide sensor localizes preferentially to areas of collagen synthesis and remodeling at the wound edge and not in matured fibrillar collagen. We also demonstrate its applicability for in vivo wound imaging and for discerning differential remodeling in wounds of transgenic mice with altered collagen dynamics. Our findings show the value of 1 as a diagnostic tool to rapidly identify the sites of matrix remodeling in tissue sections, which will aid in the conception of new therapeutic strategies for fibrotic disorders and defective tissue repair.


Assuntos
Proteína-Lisina 6-Oxidase , Cicatrização , Humanos , Camundongos , Animais , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Colágeno/metabolismo , Colágenos Fibrilares/genética , Fibrose , Peptídeos/farmacologia
3.
Biomed Pharmacother ; 171: 116075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183742

RESUMO

Lysyl oxidases (LOX(L)) are enzymes that catalyze the formation of cross-links in collagen and elastin fibers during physiologic calcification of bone. However, it remains unknown whether they may promote pathologic calcification of articular cartilage, an important hallmark of debilitating arthropathies. Here, we have studied the possible roles of LOX(L) in cartilage calcification, related and not related to their cross-linking activity. We first demonstrated that inhibition of LOX(L) by ß-aminoproprionitrile (BAPN) significantly reduced calcification in murine and human chondrocytes, and in joint of meniscectomized mice. These BAPN's effects on calcification were accounted for by different LOX(L) roles. Firstly, reduced LOX(L)-mediated extracellular matrix cross-links downregulated Anx5, Pit1 and Pit2 calcification genes. Secondly, BAPN reduced collagen fibrotic markers Col1 and Col3. Additionally, LOX(L) inhibition blocked chondrocytes hypertrophic differentiation (Runx2 and COL10), pro-inflammatory IL-6 release and reactive oxygen species (ROS) production, all triggers of chondrocyte calcification. Through unbiased transcriptomic analysis we confirmed a positive correlation between LOX(L) genes and genes for calcification, hypertrophy and extracellular matrix catabolism. This association was conserved throughout species (mouse, human) and tissues that can undergo pathologic calcification (kidney, arteries, skin). Overall, LOX(L) play a critical role in the process of chondrocyte calcification and may be therapeutic targets to treat cartilage calcification in arthropathies.


Assuntos
Calcinose , Cartilagem Articular , Artropatias , Camundongos , Humanos , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Aminopropionitrilo , Colágeno/metabolismo , Calcinose/patologia , Condrócitos/metabolismo , Hipertrofia , Cartilagem Articular/metabolismo
4.
Cancer Res ; 84(5): 652-658, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38194336

RESUMO

Mammalian members of the lysyl oxidase (LOX) family of proteins carry a copper-dependent monoamine oxidase domain exclusively within the C-terminal region, which catalyzes ε-amine oxidation of lysine residues of various proteins. However, recent studies have demonstrated that in LOX-like (LOXL) 2-4 the C-terminal canonical catalytic domain and N-terminal scavenger receptor cysteine-rich (SRCR) repeats domain exhibit lysine deacetylation and deacetylimination catalytic activities. Moreover, the N-terminal SRCR repeats domain is more catalytically active than the C-terminal oxidase domain. Thus, LOX is the third family of lysine deacetylases in addition to histone deacetylase and sirtuin families. In this review, we discuss how the LOX family targets different cellular proteins for deacetylation and deacetylimination to control the development and metastasis of cancer.


Assuntos
Neoplasias , Proteína-Lisina 6-Oxidase , Animais , Humanos , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/metabolismo , Lisina , Domínios Proteicos , Neoplasias/genética , Mamíferos/metabolismo
5.
Drug Discov Ther ; 17(6): 415-427, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044121

RESUMO

The altered behaviors and functions of pelvic floor fibroblasts are pathophysiological changes of pelvic organ prolapse (POP). Our previous study showed that advanced glycated end products (AGEs) accumulated in the pelvic tissues of POP and induced fibroblast apoptosis. The study was designed to investigate whether quercetin antagonize AGEs-induced apoptosis and functional inhibition of fibroblasts. The uptake of 5-ethynyl-2'-deoxyuridine (EdU) was evaluated for cell proliferation. Flow cytometric analysis was applied for cell apoptosis. Intracellular reactive oxygen species (ROS) content was determined by the fluorescence of dichlorofluorescein (DCF). The contractility of fibroblasts was measured by collagen gel contraction assay. The expressions of extracellular matrix (ECM) related genes and the expression of miR-4429 and caspase-3 were quantified by qPCR. The expressions of phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), serine-threonine kinase (Akt), and phosphorylated Akt (p-Akt) were analyzed by Western Blot. The down-regulation of miR-4429 was achieved by cell transfection. Quercetin antagonized AGEs-induced apoptosis, proliferation inhibition, and ROS increase in fibroblasts. Quercetin did not alleviate AGEs-induced contractile impairment of fibroblasts. Quercetin reduced the gene expressions of lysyl oxidase like protein 1 (LOXL1)and matrix metallopeptidase 1 (MMP1), and increased the gene expressions of lysyl oxidase (LOX) and fibrillin 2 (FBN2) in fibroblasts. Quercetin reversed AGEs-induced upregulation of PTEN and downregulation of PI3K, P-Akt, and miR-4429 in fibroblasts. The inhibitory effect of quercetin on AGEs-induced fibroblast apoptosis was inhibited by downregulating the expression of miR-4429. In conclusion, quercetin antagonized AGEs-induced apoptosis and functional inhibition of fibroblasts from the prolapsed uterosacral ligament. And inhibiting AGEs-induced down-regulation of miR-4429/PTEN/PI3K/Akt pathway was the mechanism underlying the antagonistic effect of quercetin on AGEs-induced apoptosis.


Assuntos
MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/farmacologia , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , Apoptose , Fibroblastos , Ligamentos/metabolismo , Proliferação de Células
6.
J Immunother ; 47(2): 64-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38047403

RESUMO

Emerging evidence has validated that extracellular vesicles (EVs) regulate hepatocellular carcinoma (HCC) progression, while its role in HCC immune escape remains to be elucidated. This study investigates the role of EVs-encapsulated lysyl oxidase like-4 (LOXL4) derived from tumor cells in HCC immune escape. HCC-related microarray data sets GSE36376 and GSE87630 were obtained for differential analysis, followed by identifying the essential genes related to the prognosis of HCC patients. Bone marrow-derived macrophages were treated with EVs derived from mouse Hepa 1-6 cells and cocultured with CD8 + T cells to observe the CD8 + T-cell activity. At last, a mouse HCC orthotopic xenograft model was constructed to verify the effects of HCC cell-derived EVs on the immune escape of HCC cells and tumorigenicity in vivo by delivering LOXL4. It was found that ACAT1, C4BPA, EHHADH, and LOXL4 may be the essential genes related to the prognosis of HCC patients. On the basis of the TIMER database, there was a close correlation between LOXL4 and macrophage infiltration in HCC. Besides, STAT1 was closely related to LOXL4. In vitro experiments demonstrated that LOXL4 could induce programmed death-ligand 1 expression in macrophages and immunosuppression by activating STAT1. In vivo experiments also verified that HCC cell-derived EVs promoted the immune escape of HCC cells and tumorigenicity by delivering LOXL4. LOXL4 was delivered into macrophages via EVs to induce programmed death-ligand 1 by activating STAT1 and inhibiting the killing ability of CD8 + T cells to HCC cells, thus promoting immune escape in HCC.


Assuntos
Carcinoma Hepatocelular , Vesículas Extracelulares , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Ligantes , Neoplasias Hepáticas/metabolismo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Evasão Tumoral
7.
Curr Eye Res ; 49(2): 150-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921272

RESUMO

PURPOSE: To investigate collagen I, collagen V, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), lysyl oxidase (LOX), transforming growth factor ß1 (TGF-ß1) and interleukin-6 (IL-6) expression in healthy and keratoconus human corneal fibroblasts (HCFs and KC-HCFs), 24 h after Rose Bengal photodynamic therapy (RB-PDT). METHODS: HCFs were isolated from healthy human corneal donors (n = 5) and KC-HCFs from elective penetrating keratoplasties (n = 5). Both cell cultures underwent RB-PDT (0.001% RB concentration, 0.17 J/cm2 fluence) and 24 h later collagen I, collagen V, NF-κB, LOX, TGF-ß1 and IL-6 mRNA and protein expression have been determined using qPCR and Western blot, IL-6 concentration in the cell culture supernatant by ELISA. RESULTS: TGF-ß1 mRNA expression was significantly lower (p = 0.02) and IL-6 mRNA expression was significantly higher in RB-PDT treated HCFs (p = 0.01), than in HCF controls. COL1A1, COL5A1 and TGF-ß1 mRNA expression was significantly lower (p = 0.04; p = 0.02 and p = 0.003) and IL-6 mRNA expression was significantly higher (p = 0.02) in treated KC-HCFs, than in KC-HCF controls. TGF-ß1 protein expression in treated HCFs was significantly higher than in HCF controls (p = 0.04). IL-6 protein concentration in the HCF and KC-HCF culture supernatant after RB-PDT was significantly higher than in controls (p = 0.02; p = 0.01). No other analyzed mRNA and protein expression differed significantly between the RB-PDT treated and untreated groups. CONCLUSIONS: Our study demonstrates that RB-PDT reduces collagen I, collagen V and TGF-ß1 mRNA expression, while increasing IL-6 mRNA and protein expression in KC-HCFs. In HCFs, RB-PDT increases TGF-ß1 and IL-6 protein level after 24 h.


Assuntos
Interleucina-6 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Rosa Bengala/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Gastroenterology ; 166(5): 886-901.e7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38096955

RESUMO

BACKGROUND & AIMS: Metabolic and transcriptional programs respond to extracellular matrix-derived cues in complex environments, such as the tumor microenvironment. Here, we demonstrate how lysyl oxidase (LOX), a known factor in collagen crosslinking, contributes to the development and progression of cholangiocarcinoma (CCA). METHODS: Transcriptomes of 209 human CCA tumors, 143 surrounding tissues, and single-cell data from 30 patients were analyzed. The recombinant protein and a small molecule inhibitor of the LOX activity were used on primary patient-derived CCA cultures to establish the role of LOX in migration, proliferation, colony formation, metabolic fitness, and the LOX interactome. The oncogenic role of LOX was further investigated by RNAscope and in vivo using the AKT/NICD genetically engineered murine CCA model. RESULTS: We traced LOX expression to hepatic stellate cells and specifically hepatic stellate cell-derived inflammatory cancer-associated fibroblasts and found that cancer-associated fibroblast-driven LOX increases oxidative phosphorylation and metabolic fitness of CCA, and regulates mitochondrial function through transcription factor A, mitochondrial. Inhibiting LOX activity in vivo impedes CCA development and progression. Our work highlights that LOX alters tumor microenvironment-directed transcriptional reprogramming of CCA cells by facilitating the expression of the oxidative phosphorylation pathway and by increasing stemness and mobility. CONCLUSIONS: Increased LOX is driven by stromal inflammatory cancer-associated fibroblasts and correlates with diminished survival of patients with CCA. Modulating the LOX activity can serve as a novel tumor microenvironment-directed therapeutic strategy in bile duct pathologies.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Células Estreladas do Fígado , Fosforilação Oxidativa , Proteína-Lisina 6-Oxidase , Microambiente Tumoral , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/enzimologia , Humanos , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/enzimologia , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/enzimologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Células Estreladas do Fígado/enzimologia , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/enzimologia , Proliferação de Células , Movimento Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais
9.
Crit Rev Eukaryot Gene Expr ; 34(2): 87-100, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38073445

RESUMO

The lysyl oxidase (LOX) gene family encodes for a group of copper-dependent enzymes that play a crucial role in the cross-linking of collagen and elastin fibers in the extracellular matrix (ECM). Dysregulation of LOX gene expression has been implicated in various pathological conditions, including cancer. Several studies have shown that the LOX gene family is involved in cancer progression and metastasis. The goal of this article is to conduct a comprehensive analysis of the LOX family's role in pan-cancer multiplexes. We utilized pan-cancer multi-omics sequencing data from TCGA to investigate the relationship between LOX family genes and tumors at four different levels: mutation, copy number variation, methylation, and gene expression. In addition, we also examined the relationship between LOX family genes and tumors at the cell line level using tumor cell line sequencing data from CCLE. Taking into account the impact of LOX family genes on lung cancer, we developed a LOX family lung cancer prognostic model to forecast the disease's prognosis. Our findings revealed that LOXL2 had the highest mutation frequency in tumors, while all four LOX family genes experienced some degree of copy number variation in diverse tumors. We observed that LOX, LOXL1 to LOXL3 were predominantly highly expressed in tumors including LUAD. The expression trends of LOX and LOXL1 to LOXL3 were consistent across tumor cell lines, but differed somewhat from LOXL4. Utilizing 25 LOX family-related genes, we constructed a LOX family prognostic model that performed well in predicting the prognosis of lung cancer. Through pan-cancer analysis, we gain further knowledge of the role of LOX family genes in different tumors, offering a novel pathway for future research into the relationship between LOX family genes and tumors.


Assuntos
Neoplasias Pulmonares , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Variações do Número de Cópias de DNA/genética , Colágeno , Matriz Extracelular/metabolismo , Neoplasias Pulmonares/metabolismo
10.
J Orthop Surg Res ; 18(1): 911, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031108

RESUMO

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a promising growth factor in bone tissue engineering, while the detailed molecular mechanism underlying BMP9-oriented osteogenesis remains unclear. In this study, we investigated the effect of lysyl oxidase (Lox) on the BMP9 osteogenic potential via in vivo and in vitro experiments, as well as the underlying mechanism. METHODS: PCR assay, western blot analysis, histochemical staining, and immunofluorescence assay were used to quantify the osteogenic markers level, as well as the possible mechanism. The mouse ectopic osteogenesis assay was used to assess the impact of Lox on BMP9-induced bone formation. RESULTS: Our findings suggested that Lox was obviously upregulated by BMP9 in 3T3-L1 cells. BMP9-induced Runx2, OPN, and mineralization were all enhanced by Lox inhibition or knockdown, while Lox overexpression reduced their expression. Additionally, the BMP9-induced adipogenic makers were repressed by Lox inhibition. Inhibition of Lox resulted in an increase in c-Myc mRNA and ß-catenin protein levels. However, the increase in BMP9-induced osteoblastic biomarkers caused by Lox inhibition was obviously reduced when ß-catenin knockdown. BMP9 upregulated HIF-1α expression, which was further enhanced by Lox inhibition or knockdown, but reversed by Lox overexpression. Lox knockdown or HIF-1α overexpression increased BMP9-induced bone formation, although the enhancement caused by Lox knockdown was largely diminished when HIF-1α was knocked down. Lox inhibition increased ß-catenin levels and decreased SOST levels, which were almost reversed by HIF-1α knockdown. CONCLUSION: Lox may reduce the BMP9 osteoblastic potential by inhibiting Wnt/ß-catenin signaling via repressing the expression HIF-1α partially.


Assuntos
Fator 2 de Diferenciação de Crescimento , beta Catenina , Animais , Camundongos , Células 3T3-L1 , beta Catenina/genética , Diferenciação Celular/genética , Fator 2 de Diferenciação de Crescimento/genética , Fator 2 de Diferenciação de Crescimento/metabolismo , Osteogênese/genética , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo
11.
Curr Drug Targets ; 24(14): 1099-1105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929723

RESUMO

Abdominal and pelvic surgery, or any surgical injury of the peritoneum, often leads to chronic abdominal adhesions that may lead to bowel obstruction, infertility, and pain. Current therapeutic strategies are usually ineffective, and the pathological mechanisms of the disease are unclear. Excess collagen cross-linking is a key mediator for extra-cellular matrix deposition and fibrogenesis. Lysyl oxidase is a key enzyme that catalyzes the formation of stabilizing cross-links in collagen. Dysregulation of Lysyl oxidase (Lox) expressing upregulates collagen cross-linking, leading ECM deposition. Tissue hypoxia during surgery induces molecular mechanisms and active transcription factors to promote the expression of several genes related to inflammation, oxidative stress, and fibrosis, such as transforming growth factor beta, and Lox. Studies have shown that targeting Lox improves clinical outcomes and fibrotic parameters in liver, lung, and myocardial fibrosis, therefore, Lox may be a potential drug target in the prevention of postsurgical adhesion.


Assuntos
Cicatriz , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Cicatriz/prevenção & controle , Cicatriz/metabolismo , Fibrose , Colágeno , Matriz Extracelular/metabolismo
12.
Biochem Biophys Res Commun ; 681: 225-231, 2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37783121

RESUMO

The commitment of mesenchymal stem cells (MSCs) to preadipocytes and the termination of differentiation to adipocytes are critical for maintaining systemic energy homeostasis. However, our knowledge of the molecular mechanisms governing the commitment of MSCs to preadipocytes and the subsequent termination of their differentiation into adipocytes remain limited. Additionally, the role of Sox6 sex-determining region Y (SRY)-box6 (Sox6), a transcription factor that regulates gene transcription, is reportedly involved in various cellular processes, including adipogenesis; however, its function in regulating preadipocyte development and the factors involved in the termination of adipogenic differentiation remain unexplored. Therefore, we investigated the role of Sox6 in regulating the differentiation of adipocytes by monitoring the effects of its overexpression in C3H10T1/2 cells (in vitro) and C57BL/6J mouse (in vivo) models of adipogenesis. We observed lower Sox6 expression in the adipose tissue of obese mice than that in control mice. Sox6 overexpression inhibited the differentiation of MSC by directly binding to the lysyl oxidase (Lox) and preadipocyte factor 1 (Pref1) promoters, which was potentiated by histone deacetylase-1(HDAC1). Our findings suggest that Sox6 is a key regulator of MSC commitment to adipocytes; therefore, targeting the Sox6-mediated regulation of this process could offer potential therapeutic avenues for addressing obesity and related metabolic disorders.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular/genética , Camundongos Endogâmicos C57BL , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo
13.
Life Sci ; 333: 122143, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797686

RESUMO

INTRODUCTION: The flavonoid-rich fraction of Rosa damascena (FRFRD) contains antioxidant and active compounds. Therefore, this study aimed to investigate the role of FRFRD, rich in quercetin and kaempferol, in liver fibrosis induced by CCl4. MATERIALS AND METHODS: The FRFRD fraction was separated and standardized by High-Performance Liquid Chromatography (HPLC) based on the levels of quercetin and kaempferol. Liver fibrosis was induced over CCl4 over 12 weeks in 30 male Wistar rats, and three concentrations of FRFRD were administered to them during the last four weeks. Subsequently, after evaluation of liver serum markers and fibrotic parameters, the relative expression of transforming growth factor-beta-1 (TGF-ß1), platelet-derived growth factor (PDGF), and lysyl oxidase homolog 2 (Loxl2) genes were assessed, along with the measurement of lysyl oxidase activity and oxidative markers. RESULTS: Fibrotic markers demonstrated progressive recovery of liver damage in the treated group compared to the non-treatment group (p < 0.01). These results were accompanied by a significant decrease in the expression of TGF-ß1, PDGF, and Loxl2 genes, as well as, a reduction in lysyl oxidase activity (p < 0.001). The antioxidant effects of the treatment were observed through a significant decrease in malondialdehyde (MDA) levels and an increase in catalase enzyme (CAT) and glutathione peroxidase (GPx) activity in the treatment group compared to the fibrotic group (p < 0.01). CONCLUSION: The flavonoid-rich fraction of Rosa damascena ameliorates liver damage by affecting collagen cross-linking and lowering oxidative and inflammatory levels.


Assuntos
Antioxidantes , Rosa , Masculino , Ratos , Animais , Antioxidantes/metabolismo , Citocinas/metabolismo , Rosa/metabolismo , Quempferóis/farmacologia , Quercetina/farmacologia , Quercetina/metabolismo , Oxidantes/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Ratos Wistar , Cirrose Hepática/metabolismo , Fígado/metabolismo , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Flavonóis/farmacologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Flavonoides/metabolismo , Colágeno/metabolismo , Modelos Animais , Tetracloreto de Carbono/farmacologia
14.
Amino Acids ; 55(11): 1519-1529, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814029

RESUMO

Lysyl oxidase-like 4 (LOXL4), a member of lysyl oxidase family, is a copper and lysine tyrosylquinone-dependent amine oxidase that serves the role of catalyzing the cross-linking of elastin and collagen in the extracellular matrix. Numerous studies have shown a significant association between LOXL4 expression levels and tumor proliferation, migration, invasion and patients' prognosis and overall survival in different types of tumors. Here we review their relationship and the molecular pathogenesis behind them, aiming to explore the possibilities of LOXL4 as a prognostic marker for diverse carcinomas and provide some indications for further research in this field.


Assuntos
Carcinoma , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Prognóstico , Colágeno
15.
J Cardiovasc Pharmacol ; 82(5): 364-374, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678299

RESUMO

ABSTRACT: We investigated the clinical characteristics of patients with acute aortic dissection (AAD) and miR-590-3p levels in serum, tissue, and vascular smooth muscle cells. The effect of miR-590-3p on the vascular smooth muscle cell phenotype was assessed, and the regulation of lysyl oxidase by miR-5903p was determined. C57BL/6 mice were used to investigate the incidence of AAD and effects of miR-5903p on AAD. The miR-590-3p levels were measured in the aortae of mice, and hematoxylin and eosin staining and Masson staining were performed to identify the morphological features of the aorta. Comparative analysis revealed significant differences in clinical characteristics between patients with AAD and healthy control subjects, with most patients with AAD exhibiting concomitant hypertension and nearly 50% having atherosclerosis. Lysyl oxidase was a direct target of miR-590-3p. Lysyl oxidase overexpression inhibited switching of the vascular smooth muscle cell phenotype from contractile to synthetic, but miR-590-3p overexpression significantly reversed this change. In the mouse model, miR-590-3p upregulation increased the incidence of AAD to 93.3%, and its incidence decreased to 13.3% after miR-590-3p inhibition. Hematoxylin and eosin and Masson staining revealed that the miR-590-3p agomiR group had a greater loss of the contractile phenotype in the dissected aortic wall and an increased number of muscle fibers in the aortic wall, which contributed to thickening of the aortic wall and the formation of a false lumen in aortic dissection. miR-590-3p might be pivotal in the pathogenesis of AAD. Thus, targeting miR-590-3p or its downstream pathways could represent a therapeutic approach for AAD.


Assuntos
Dissecção Aórtica , MicroRNAs , Animais , Humanos , Camundongos , Dissecção Aórtica/genética , Proliferação de Células , Células Cultivadas , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fenótipo , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/farmacologia
16.
Dokl Biochem Biophys ; 510(1): 132-143, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37582875

RESUMO

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.


Assuntos
Glioma , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/análise , Proteína-Lisina 6-Oxidase/metabolismo , Relevância Clínica , Colágeno/metabolismo , Glioma/genética
17.
Int J Oral Sci ; 15(1): 32, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532712

RESUMO

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2ß1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2ß1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Assuntos
Carcinoma de Células Escamosas , Vesículas Extracelulares , Neoplasias Bucais , Humanos , Paxilina/metabolismo , Proteína-Lisina 6-Oxidase/metabolismo , Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Integrina alfa2beta1/metabolismo , Neoplasias Bucais/patologia , Colágeno/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
18.
Clin. transl. oncol. (Print) ; 25(8): 2487-2498, aug. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-222425

RESUMO

Objective Esophageal squamous cell carcinoma (ESCC) is a common and aggressive malignancy of the gastrointestinal tract for which therapeutic options are scarce. This study screens for LOXL2, a key gene in ESCC, and explains the molecular mechanism by which it promotes the progression of ESCC. Methods Immunohistochemical staining was performed to detect the expression level of LOXL2 in ESCC tissues and paraneoplastic tissues. CCK-8 and Transwell assays were performed to assess the effects of LOXL2 knockdown and overexpression on the proliferation, apoptosis, migration and invasion ability of ESCC cells. High-throughput sequencing analysis screens for molecular mechanisms of action by which LOXL2 promotes ESCC progression. Western blotting and qRT-PCR were used to determine the expression levels of relevant markers. Results LOXL2 is positively expressed in ESCC and highly correlated with poor prognosis. Silencing LOXL2 significantly inhibited the proliferation, migration and invasive ability of ESCC cells, whereas overexpression showed the opposite phenotype. High-throughput sequencing suggested that LOXL2-associated differentially expressed genes were highly enriched in the PI3K/AKT signaling pathway. In vitro cellular assays confirmed that silencing LOXL2 significantly reduced PI3K, p-AKTThr308 and p-AKTSer473 gene and protein expression levels, while overexpression increased all three gene and protein levels, while AKT gene and protein expression levels were not significantly different. Conclusion This study found that LOXL2 may regulate the PI3K/AKT signaling pathway and exert protumor effects on ESCC cells through phosphorylation of AKT. LOXL2 may be a key clinical warning biomarker or therapeutic target for ESCC (AU)


Assuntos
Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Fosforilação
19.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446164

RESUMO

Collagen, the most abundant structural protein found in mammals, plays a vital role as a constituent of the extracellular matrix (ECM) that surrounds cells. Collagen fibrils are strengthened through the formation of covalent cross-links, which involve complex enzymatic and non-enzymatic reactions. Lysyl oxidase (LOX) is responsible for catalyzing the oxidative deamination of lysine and hydroxylysine residues, resulting in the production of aldehydes, allysine, and hydroxyallysine. These intermediates undergo spontaneous condensation reactions, leading to the formation of immature cross-links, which are the initial step in the development of mature covalent cross-links. Additionally, non-enzymatic glycation contributes to the formation of abnormal cross-linking in collagen fibrils. During glycation, specific lysine and arginine residues in collagen are modified by reducing sugars, leading to the creation of Advanced Glycation End-products (AGEs). These AGEs have been associated with changes in the mechanical properties of collagen fibers. Interestingly, various studies have reported that plant polyphenols possess amine oxidase-like activity and can act as potent inhibitors of protein glycation. This review article focuses on compiling the literature describing polyphenols with amine oxidase-like activity and antiglycation properties. Specifically, we explore the molecular mechanisms by which specific flavonoids impact or protect the normal collagen cross-linking process. Furthermore, we discuss how these dual activities can be harnessed to generate properly cross-linked collagen molecules, thereby promoting the stabilization of highly organized collagen fibrils.


Assuntos
Lisina , Proteína-Lisina 6-Oxidase , Animais , Proteína-Lisina 6-Oxidase/metabolismo , Lisina/metabolismo , Polifenóis/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Homeostase , Aminas/metabolismo , Mamíferos/metabolismo
20.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37510994

RESUMO

Pulmonary fibrosis (PF) associated with systemic sclerosis (SSc) results in significant morbidity and mortality. We previously reported that insulin-like growth factor-II (IGF-II) is overexpressed in lung tissues and fibroblasts from SSc patients, and IGF-II fosters fibrosis by upregulating collagen type I, fibronectin, and TGFß. We now show that IGF-II augments mRNA levels of profibrotic signaling molecules TGFß2 (p ≤ 0.01) and TGFß3 (p ≤ 0.05), collagen type III (p ≤ 0.01), and the collagen posttranslational modification enzymes P4HA2 (p ≤ 0.05), P3H2 (p ≤ 0.05), LOX (p = 0.065), LOXL2 (p ≤ 0.05), LOXL4 (p ≤ 0.05) in primary human lung fibroblasts. IGF-II increases protein levels of TGFß2 (p ≤ 0.01), as well as COL3A1, P4HA2, P4Hß, and LOXL4 (p ≤ 0.05). In contrast, IGF-II decreases mRNA levels of the collagen degradation enzymes cathepsin (CTS) K, CTSB, and CTSL and protein levels of CTSK (p ≤ 0.05). The SRY-box transcription factor 9 (SOX9) is overexpressed in SSc lung tissues at the mRNA (p ≤ 0.05) and protein (p ≤ 0.01) levels compared to healthy controls. IGF-II induces SOX9 in lung fibroblasts (p ≤ 0.05) via the IGF1R/IR hybrid receptor, and SOX9 regulates TGFß2 (p ≤ 0.05), TGFß3 (p ≤ 0.05), COL3A1 (p ≤ 0.01), and P4HA2 (p ≤ 0.001) downstream of IGF-II. Our results identify a novel IGF-II signaling axis and downstream targets that are regulated in a SOX9-dependent and -independent manner. Our findings provide novel insights on the role of IGF-II in promoting pulmonary fibrosis.


Assuntos
Fator de Crescimento Insulin-Like II , Fibrose Pulmonar , Escleroderma Sistêmico , Humanos , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Pulmão/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Fibrose Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Escleroderma Sistêmico/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...